
ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1388

Data Storage Security in Cloud Computing

Manoj Kokane
1
, Premkumar Jain

2
, Poonam Sarangdhar

3

Government College of Engineering and Research, Awasari, Pune, India
1, 2, 3

Abstract: Cloud computing is an emerging computing model in which resources of the computing communications are provided as

services over the Internet. This paper proposed some services for data security and access control when users outsource sensitive

data for sharing on cloud servers. This paper addresses this challenging open issue by, on one hand, defining and enforcing access

policies based on data attributes, and, on the other hand, allowing the data owner to assign most of the computation tasks involved in

fine grained data access control to un-trusted cloud servers without disclosing the underlying data contents. Extensive analysis shows

that our proposed scheme is highly efficient and provably secures under existing security models. In Order to address this new

problem and further achieve a secure and dependable cloud storage service, we propose in this paper a flexible distributed storage

integrity auditing mechanism, utilizing the homomorphic token and distributed coded data. By third party auditing in this system,

improves the availability and reliability of users data. This paper effectively supports dynamic data operations. As system is

distributed, it is very essential to locate the misbehaving server so as that the user can access his sensitive information without any

changes in it. This system also works against server attack and data crashes effectively.

Keywords: Homomorphic tokens, Third party auditing, SHA1

I. INTRODUCTION

Cloud computing, to put it simply, means internet

computing. The internet is commonly visualized as

clouds; hence the term “cloud computing” for

computation done through the internet. With cloud

computing users can access database resources via the

internet from anywhere, for as long as they need, without

worrying about any maintenance or management of actual

resources. Besides, databases in cloud are very dynamic

and scalable. Cloud Computing is unlike grid computing,

utility computing, or autonomic computing. In fact, it is a

very independent platform in terms of computing. The

best example of cloud computing is Google apps where

any application can be accessed using a browser and it

can be deployed on thousands of computer through the

internet. It also provides facilities for users to develop,

deploy and manage their applications on the cloud, which

entails virtualization of resources that maintains and

manages itself.

Our proposed scheme enables the data owner to

delegate tasks of data file re-encryption and user secret

key update to cloud servers without disclosing data

contents or user access privilege information. We achieve

this goal by exploiting and uniquely combining

techniques and algorithms (Correctness Verification and

Error Localization, traditional replication-based file

distribution, adding random perturbations).

 In this paper, we propose an effective and

flexible distributed scheme with explicit dynamic data

support to ensure the correctness of users’ data in the

cloud. We rely on erasure-correcting code in the file

distribution preparation to provide redundancies and

guarantee the data dependability. This construction

drastically reduces the communication and storage

overhead as compared to the traditional replication-based

file distribution techniques. By utilizing the homomorphic

token with distributed verification of erasure-coded data,

our scheme achieves the storage correctness insurance as

well as data error localization: whenever data corruption

has been detected during the storage correctness

verification, our scheme can almost guarantee the

simultaneous localization of data errors i.e. the

identification of the misbehaving server(s).

Our work is among the first few ones in this field to

consider distributed data storage in Cloud Computing.

Our contribution can be summarized as the following

three aspects:

1) Compared to many of its predecessors, which only

provide binary results about the storage state across the

distributed servers, the challenge-response protocol in our

work further provides the localization of data error.

2) Unlike most prior works for ensuring remote data

integrity, the new scheme supports secure and efficient

dynamic operations on data blocks, including: update,

delete and append.

3) Extensive security and performance analysis shows that

the proposed scheme is highly efficient and resilient

against Byzantine failure, malicious data modification

attack, and even server colluding attacks.

The rest of the paper is organized as follows. Section II

introduces the system model, adversary model, our design

goal and notations. Then we provide the detailed

description of our scheme in Section III and IV. Section

V which overviews the related work. Finally, Section VI

gives the concluding remark of the whole paper.

II. PROBLEM STATEMENT

 A. System Model

Representative network architecture for cloud data

storage is illustrated in Figure 1.

Three different network entities can be identified as

follows:

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1389

• User: users, who have data to be stored in the cloud and

rely on the cloud for data computation, consist of both

individual consumers and organizations.

• Cloud Service Provider (CSP): a CSP, who has

significant resources and expertise in building and

managing distributed cloud storage servers, owns and

operates liv Cloud Computing systems.

• Third Party Auditor (TPA): an optional TPA, who has

expertise and capabilities that users may not have, is

trusted to assess and expose risk of cloud storage services

on behalf of the users upon request Implementation of

TPA is one of the main goal of this paper.

 In cloud data storage, a user stores his data

through a CSP into a set of cloud servers, which are

running in a simultaneous, cooperated and distributed

manner. Data redundancy can be employed with

technique of erasure-correcting code to further tolerate

faults or server crash as user’s data grows in size and

importance. Thereafter, for application purposes, the user

interacts with the cloud servers via CSP to access or

retrieve his data. In some cases the user may need to

perform block level operations on his data. As users no

longer possess their data locally, it is of critical

importance to assure users that their data are being

corsrectly stored and maintained. In case that users do not

necessarily have the time, feasibility or resources to

monitor their data, they can delegate the tasks to an

optional trusted TPA of their respective choices. In our

model, we assume that the point-to-point communication

channels between each cloud server and the user is

authenticated and reliable, which can be achieved in

practice with little overhead. Note that we don’t address

the issue of data privacy in this paper, as in Cloud

Computing, data privacy is orthogonal to the problem we

study here.

Figure 1: Cloud Data Storage Architecture

B. Adversary Model

Security threats faced by cloud data storage can come

from two different sources. On the one hand, a CSP can

be self-interested, untrusted and possibly malicious. Not

only does it desire to move data that has not been or is

rarely accessed to a lower tier of storage than agreed for

monetary reasons, but it may also attempt to hide a data

loss incident due to management errors, Byzantine

failures and so on. On the other hand, there may also

exist an economically motivated adversary, who has the

capability to compromise a number of cloud data storage

servers in different time intervals and subsequently is able

to modify or delete user’s data while remaining

undetected by CSPs for a certain period. Specifically, we

consider two types of adversary with different levels of

capability in this paper:

Weak Adversary: The adversary is interested in corrupting

the user’s data files stored on individual servers. Once a

server is comprised, an adversary can pollute the original

data files by modifying or introducing its own fraudulent

data to prevent the original data from being retrieved by

the user.

Strong Adversary: This is the worst case scenario, in

which we assume that the adversary can compromise all

the storage servers so that he can intentionally modify the

data files as long as they are internally consistent. In fact,

this is equivalent to the case where all servers are

colluding together to hide a data loss or corruption

incident.

C. Design Goals

To ensure the security and dependability for cloud data

storage under the aforementioned adversary model, we

aim to design efficient mechanisms for dynamic data

verification and operation and achieve the following

goals: (1) Storage correctness: to ensure users that their

data are indeed stored appropriately and kept intact all the

time in the cloud. (2) Fast localization of data error: to

effectively locate the malfunctioning server when data

corruption has been detected. (3) Dynamic data support:

to maintain the same level of storage correctness

assurance even if users modify, delete or append their

data files in the cloud. (4) Dependability: to enhance data

availability against Byzantine failures, malicious data

modification and server colluding attacks, i.e. minimizing

the effect brought by data errors or server failures. (5)

Lightweight: to enable users to perform storage

correctness checks with minimum overhead.

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1390

III. ENSURING CLOUD DATA STORAGE

In cloud data storage system, users store their data in

the cloud and no longer possess the data locally. Thus, the

correctness and availability of the data files being stored

on the distributed cloud servers must be guaranteed. One

of the key issues is to effectively detect any unauthorized

data modification and corruption, possibly due to server

compromise and/or random Byzantine failures. Besides,

in the distributed case when such inconsistencies are

successfully detected, to find which server the data error

lies in is also of great significance, since it can be the first

step to fast recover the storage errors. To address these

problems, our main scheme for ensuring cloud data

storage is presented in this section. The first part of the

section is devoted to a review of basic tools from coding

theory that is needed in our scheme for file distribution

across cloud servers. Then, the homomorphic token is

introduced. The token computation function we are

considering belongs to a family of universal hash

function, chosen to preserve the homomorphic properties,

which can be perfectly integrated with the verification of

erasure-coded data. Subsequently, it is also shown how to

derive a challenge response protocol for verifying the

storage correctness as well as identifying misbehaving

servers. Finally, the procedure for file retrieval and error

recovery based on erasure-correcting code is outlined.

A. File Distribution Preparation

It is well known that erasure-correcting code may be used

to tolerate multiple failures in distributed storage systems.

In cloud data storage, we rely on this technique to

disperse the data file F redundantly across a set of n = m+

k distributed servers. A (m + k, k) Reed-Solomon erasure-

correcting code is used to create k redundancy parity

vectors from m data vectors in such a way that the

original m data vectors can be reconstructed from any m

out of the m + k data and parity vectors. By placing each

of the m + k vectors on a different server, the original data

file can survive the failure of any k of the m+k servers

without any data loss, with a space overhead

of k/m. For support of efficient sequential I/O to the

original file, our file layout is systematic, i.e., the

unmodified m data file vectors together with k parity

vectors is distributed across m+ k different servers.

B. Challenge Token Pre-computation

In order to achieve assurance of data storage correctness

and data error localization simultaneously, our scheme

entirely relies on the pre-computed verification tokens.

The main idea is as follows: before file distribution the

user pre-computes a certain number of short verification

tokens on individual vector G(j) (j ∈ {1, . . . , n}), each

token covering a random subset of data blocks. Later,

when the user wants to make sure the storage correctness

for the data in the cloud, he challenges the cloud servers

with a set of randomly generated block indices. Upon

receiving challenge, each cloud server computes a short

“signature” over the specified blocks and returns them to

the user. The values of these signatures should match the

corresponding tokens pre-computed by the user.

Meanwhile, as all servers operate over the same subset of

the indices, the requested response values for integrity

check must also be a valid code word determined by

secret matrix P. Suppose the user wants to challenge the

cloud server’s t times to ensure the correctness of data

storage. Then, he must pre-compute t verification tokens

for each G(j) (j ∈ {1, . . . , n}), using a PRF f(·), a PRP

_(·), a challenge key kchal and a master permutation key

KPRP . After token generation, the user has the choice of

either keeping the pre-computed tokens locally or storing

them in encrypted form on the cloud servers. In our case

here, the user stores them locally to obviate the need for

encryption and lower the bandwidth overhead during

dynamic data operation which will be discussed shortly.

The details of token generation are shown in Algorithm 1.

Once all tokens are computed, the final step before file

distribution is to blind each parity block gi
(j)

 in (G
(m+1)

, . . .

,G
(n)

) by

gi
(j)

 ← gi
(j)

 + fkj (sij), i ∈ {1, . . . , l},

where kj is the secret key for parity vector G
(j)

 (j ∈
{m +1, . . . , n}). After blinding the parity

information, the user disperses all the n encoded vectors

G(j) (j ∈ {1, . . . , n}) across the cloud servers S1, S2, . . . ,

Sn.

C. Correctness Verification and Error Localization

Error localization is a key prerequisite for eliminating

errors in storage systems. However, many previous

schemes do not explicitly consider the problem of data

error localization, thus only provide binary results for the

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1391

storage verification. Our scheme outperforms those by

integrating the correctness verification and error

localization in our challenge-response protocol: the

response values from servers for each challenge not only

determine the correctness of the distributed storage, but

also contain information to locate potential data error(s).

D. File Retrieval and Error Recovery

Since our layout of file matrix is systematic, the user can

reconstruct the original file by downloading the data

vectors from the first m servers, assuming that they return

the correct response values. Notice that our verification

scheme is based on random spot-checking, so the storage

correctness assurance is a probabilistic one. However, by

choosing system parameters (e.g., r, l, t) appropriately and

conducting enough times of verification, we can

guarantee the successful file retrieval with high

probability.

On the other hand, whenever the data corruption is

detected, the comparison of pre-computed tokens and

received response values can guarantee the identification

of misbehaving server(s), again with high probability,

which will be discussed shortly. Therefore, the user can

always ask servers to send back blocks of the r rows

specified in the challenge and regenerate the correct

blocks by erasure correction, shown in Algorithm 3, as

long as there are at most k misbehaving servers are

identified. The newly recovered blocks can then be

redistributed to the misbehaving servers to maintain the

correctness of storage.

IV. TOWARDS THIRD PARTY AUDITING

As discussed in our architecture, in case the user does

not have the time, feasibility or resources to perform the

storage correctness verification, he can optionally

delegate this task to an independent third party auditor,

making the cloud storage publicly verifiable. However, as

pointed out by the recent work [27], [28], to securely

introduce an effective TPA, the auditing process should

bring in no new vulnerabilities towards user data privacy.

Namely, TPA should not learn user’s data content through

the delegated data auditing. Now we show that with only

slight modification, our protocol can support privacy-

preserving third party auditing.

The new design is based on the observation of linear

property of the parity vector blinding process. Recall that

the reason of blinding process is for protection of the

secret matrix P against cloud servers. However, this can

be achieved either by blinding the parity vector or by

blinding the data vector (we assume k < m). Thus, if we

blind data vector before file distribution encoding, then

the storage verification task can be successful delegated to

third party auditing in a privacy-preserving manner.

Figure 2: Towards Public Auditing

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1392

V. RELATED WORK

Jules [2] described a formal “proof of retrievability”

(POR) model for ensuring the remote data integrity. Their

scheme combines spot-checking and error correcting code

to ensure both possession and retrievability of files on

archive service systems. Shacham [3] built on this model

and constructed a random linear function based

homomorphic authenticator which enables unlimited

number of challenges and requires less communication

overhead due to its usage of relatively small size of BLS

signature. In their subsequent work, Ateniese [4]

described a PDP scheme that uses only symmetric key

based cryptography. This method has lower-overhead

than their previous scheme and allows for block updates,

deletions and appends to the stored file, which has also

been supported in our work. However, their scheme

focuses on single server scenario and does not provide

data availability guarantee against server failures, leaving

both the distributed scenario and data error recovery issue

unexplored. The explicit support of data dynamics has

further been studied in the two recent works [5] and [6].

The incremental cryptography work done by Bellare [10]

also provides a set of cryptographic building blocks such

as hash, MAC, and signature functions that may be

employed for storage integrity verification while

supporting dynamic operations on data. However, this

branch of work falls into the traditional data integrity

protection mechanism, where local copy of data has to be

maintained for the verification. It is not yet clear how the

work can be adapted to cloud storage scenario where

users no longer have the data at local sites but still need to

ensure the storage correctness efficiently in the cloud.

In other related work, Curtmola [9] aimed to ensure

data possession of multiple replicas across the distributed

storage system. They extended the PDP scheme to cover

multiple replicas without encoding each replica

separately, providing guarantee that multiple copies of

data are actually maintained. Very recently, C. Wang [8]

gave a study on many existing solutions on remote data

integrity checking, and discussed their pros and cons

under different design scenarios of secure cloud storage

services.

Portions of the work presented in this paper have

previously appeared as an extended abstract in [7]. We

have revised the article a lot and add more technical

details as compared to [7]. The primary improvements are

as follows: Firstly, we provide the protocol extension for

privacy-preserving third-party auditing, and discuss the

application scenarios for cloud storage service. Secondly,

we add correctness analysis of proposed storage

verification design. Thirdly, we completely redo all the

experiments in our performance evaluation part, which

achieves significantly improved result as compared to [7].

We also add detailed discussion on the strength of our

bounded usage for protocol verifications and its

comparison with state-of-the-art.

VI. CONCLUSION

 In this paper, we investigate the problem of data

security in cloud data storage, which is essentially a

distributed storage system. To achieve the assurances of

cloud data integrity and availability and enforce the

quality of dependable cloud storage service for users, we

propose an effective and flexible distributed scheme with

explicit dynamic data support, including block update,

delete, and append. We rely on erasure-correcting code in

the file distribution preparation to provide redundancy

parity vectors and guarantee the data dependability. By

utilizing the homomorphic token with distributed

verification of erasure-coded data, our scheme achieves

the integration of storage correctness insurance and data

error localization, i.e., whenever data corruption has been

detected during the storage correctness verification across

the distributed servers, we can almost guarantee the

simultaneous identification of the misbehaving server(s).

Considering the time, computation resources, and even

the related online burden of users, we also provide the

extension of the proposed main scheme to support third-

party auditing, where users can safely delegate the

integrity checking tasks to third-party auditors and be

worry-free to use the cloud storage services. Through

detailed security and extensive experiment results, we

show that our scheme is highly efficient and resilient to

Byzantine failure, malicious data modification attack, and

even server colluding attacks.

REFERENCES

 [1] S.Sajithabanu and Dr.E.George Prakash Raj, “Data Storage Security
in Cloud” IJCST Vol. 2, Issue 4, Oct. - Dec. 2011

 [2] A. Jules and J. Burton S. Kaliski, “Pors: Proofs of retrievability for

large files,” in Proc. of CCS’07, Alexandria, VA, October 2007, pp.
584–597.

[3] H. Shacham and B. Waters, “Compact proofs of retrievability,” in

Proc. of Asiacrypt’08, volume 5350 of LNCS, 2008, pp. 90–107.
[4] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “Scalable

and efficient provable data possession,” in Proc. of Secure Comm’08,

2008, pp. 1–10.
[5] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public

verifiability and data dynamics for storage security in cloud computing,”

in Proc. of ESORICS’09, volume 5789 of LNCS. Springer-Verlag, Sep.
2009, pp. 355–370.

[6] C. Erway, A. Kupcu, C. Papamanthou, and R. Tamassia, “Dynamic

provable data possession,” in Proc. of CCS’09, 2009, pp. 213–222.
[7] C. Wang, Q. Wang, K. Ren, and W. Lou, “Ensuring data storage

security in cloud computing,” in Proc. of IWQoS’09, July 2009, pp. 1–9.
[8] C. Wang, K. Ren, W. Lou, and J. Li, “Towards publicly auditable

secure cloud data storage services,” IEEE Network Magazine, vol. 24,

no. 4, pp. 19–24, 2010.
[9] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, “Mr-pdp:

Multiple-replica provable data possession,” in Proc. of ICDCS’08. IEEE

Computer Society, 2008, pp. 411–420.
[10] M. Bellare, O. Goldreich, and S. Goldwasser, “Incremental

cryptography: The case of hashing and signing,” in Proc. Of

CRYPTO’94, volume 839 of LNCS. Springer-Verlag, 1994, pp. 216–233.
[11] Amazon.com, “Amazon Web Services (AWS),” Online at

http://aws.amazon.com, 2008.

6

ISSN (Print) : 2319-5940

ISSN (Online) : 2278-1021

 International Journal of Advanced Research in Computer and Communication Engineering

 Vol. 2, Issue 3, March 2013

Copyright to IJARCCE www.ijarcce.com 1393

BIOGRAPHY

MANOJ B. KOKANE

Government College of Engineering and

Reasearch, Awasari, Pune, India.

B.E.(Computer Science and Engineering)

PREMKUMAR S. JAIN

Government College of Engineering and

Reasearch, Awasari, Pune, India.

B.E.(Computer Science and Engineering)

POONAM S. SARANGDHAR

Government College of Engineering and

Reasearch, Awasari, Pune, India.

B.E.(Computer Science and Engineering

